
12.3) Angles Between Vectors And The Dot Product

1. Angles Between Vectors:

Given any two nonzero vectors in the same dimensional space (either both two-dimensional
or both three-dimensional), we can identify a unique angle between these two vectors. To
visualize this angle, we should depict the vectors as two directed line segments with a
common initial point.

Since the zero vector, 0, cannot be represented as a directed line segment, the angle
between 0 and any other vector is undefined.

Angles between vectors can be measured in either radians or degrees. If a measurement
is stated without the units being specified, then radians are assumed.

Angles between vectors differ from angles as studied in Trig class, in two important regards:
1. In Trig class, every nonzero angle has an orientation, which is either clockwise or

counter-clockwise. Counter-clockwise angles have positive measurements, while
clockwise angles have negative measurements. In vector theory, however,
angles have no orientation, so we will never deal with negative angle
measurements. The measure of an angle between vectors is always greater than
or equal to 0 radians or 0 degrees.

2. In Trig class, an angle can have a measure greater than  radians or 180 degrees.
In vector theory, this is not possible. The measure of an angle between vectors is
always less than or equal to  radians or 180 degrees.

If two nonzero vectors have the same direction, then the angle between them is 0 radians or
0 degrees.

If two nonzero vectors have opposite direction, then the angle between them is  radians or
180 degrees.

Two nonzero vectors are said to be parallel if and only if they have either the same
direction or opposite direction–i.e., if and only if the angle between them is either 0 or .
(The zero vector cannot be considered parallel to any vector, because it has no direction.)

Two nonzero vectors are parallel if and only if each is a nonzero scalar multiple of the other.
(If the scalar is positive, the vectors have the same direction; if the scalar is negative, the
vectors have opposite direction.)

Example One: Let a   2,3 , b   4,6 , and c   6,9 . Note that b  2a,
c  3a, and c  1.5b. The three vectors are pairwise parallel. a and b have the same
direction, but a and c have opposite direction, as do b and c.
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If two nonzero vectors are not scalar multiples of each other, then they are nonparallel and
the angle between them is between 0 and .

If the angle between two nonzero vectors is 
2 radians or 90 degrees, the two vectors are

said to be perpendicular.

Example Two: In the x,y plane, the vectors i   1,0  and j   0,1  are perpendicular.
In x,y, z space, the vectors i   1,0,0 , j   0,1,0 , and k   0,0,1  are pairwise
perpendicular.

An angle of 
2 is said to be a right angle, an angle of  is said to be a straight angle, an

angle of 0 is said to be a zero angle, an angle between 0 and 
2 is said to be an acute

angle, and an angle between 
2 and  is said to be an obtuse angle. Hence, if two

nonzero vectors are parallel, then the angle between them is either zero or straight, and if
they are nonparallel, then the angle between them is either acute, right, or obtuse.

Given two nonzero vectors in component form, how can we calculate the angle between
them? We shall develop a formula for this calculation, but first we must introduce the
concept of the “dot product” of two vectors.

2. The Dot Product and Orthogonal Vectors:

Given any two vectors a   a1,a2  and b   b1,b2 , their dot product is a  b 
a1b1  a2b2.

Given any two vectors a   a1,a2,a3  and b   b1,b2,b3 , their dot product is a  b 
a1b1  a2b2  a3b3.

Note that the result of the dot product is a scalar. It can be positive or negative or zero.

Example Three:  2,7    3,4   23  74  6  28  22.

Example Four:  5,1,3    7,2,6   57  12  36  35  2  18  19.

In the x,y plane, if a   a1,a2 , then a  i  a1 and a  j  a2.

In x,y, z space, if a   a1,a2,a3 , then a  i  a1 and a  j  a2 and a  k  a3.

Recall from basic arithmetic that a compound expression is one involving more than one
operation (or the same operation carried out multiple times). We must be very careful when
we write compound expressions involving vector operations. If we’re not careful, we could
write an expression that makes no sense. For instance, the expression a  b  c makes no
sense, because the first dot product produces a scalar, so the second dot product cannot
be carried out (the dot product can only be performed on two vectors). The expressions
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a  b  c and a  b  c make sense, but the expressions a  b  c and a  b  c do not (the
dot product produces a scalar, and we cannot add or subtract a scalar and a vector). In
expressions such as a  b  c  d or a  b  c  d, the plus sign and the minus sign are
understood to represent scalar addition and subtraction, rather than vector addition and
subtraction, and it is understood that the dot products are carried out first.

The dot product has the following properties:
 a  b  b  a (The dot product is commutative)
 ca  b  ca  b  a  cb (We may omit parentheses and write ca  b. )
 ca  db  cda  b
 0  a  0, for any vector a
 a  a  a2, and a  a  a
 a  b  c  a  b  a  c
 a  b  c  a  b  a  c
 a  b  c  a  c  b  c
 a  b  c  a  c  b  c
The last four properties can be summarized as follows: The dot product distributes over
vector addition and subtraction.

On the basis of the above distributive properties, the product of vector binomials can be
distributed out, just like products of ordinary binomials (a process commonly known as
FOIL).

Example Five: a  b  c  d  a  c  a  d  b  c  b  d

With scalar multiplication, if xy  0, then either x  0 or y  0. This does not work with
vectors! If a  b  0, we cannot infer that a  0 or b  0. It is possible that two nonzero
vectors can have a dot product of 0.

Example Six: The dot product of  3,5  and  5,3  is 0.

Example Seven: The dot product of  2,9,5  and  6,7,15  is 0.

If two vectors have a dot product of 0, then they are said to be orthogonal to each other
(more briefly, we just say they “are orthogonal”). Thus,  3,5  and  5,3  are
orthogonal, as are  2,9,5  and  6,7,15 .

0 is orthogonal to every vector.

Given any nonzero vector, there are infinitely many nonzero vectors orthogonal to it.
 Given any nonzero vector  p,q , every scalar multiple of  q,p  or  q,p  is

orthogonal to it. Furthermore, every vector orthogonal to  p,q  must be a scalar
multiple of  q,p  or  q,p .
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 Given any nonzero vector  p,q, r , every scalar multiple of each of the following
vectors is orthogonal to it:
 q,p, 0  or  q,p, 0 
 r, 0,p  or  r, 0,p 
 0, r,q  or  0,r,q 
This does not give us an exhaustive account of all vectors orthogonal to  p,q, r .

Example Eight: The following vectors are orthogonal to  4,7 . . .
  7,4 
  7,4 
  63,36 
  84,48 
  7

13 ,
4
13 

  1, 4
7 

  7
4 , 1 

Example Nine: The following vectors are orthogonal to  3,6,5 . . .
  6,3,0 
  5,0,3 
  0,5,6 
  12,6,0 
  1.25,0,0.75 
  0,30,36 
  1, 1

2 , 0 

3. The Relationship Between the Dot Product and Angle Measure:

The Dot Product Theorem: For any two nonzero vectors a and b, if  is the angle between
them, then a  b  abcos.

Proof:

First, suppose a and b have the same direction   0. Since cos0  1, we must show that
a  b  ab. Because our vectors are in the same direction, there exists a positive scalar c
such that a  cb, so a  cb. a  b  cb  b  cb  b  cb2. ab  cbb  cb2. Thus,
a  b  ab.

Second, suppose a and b have opposite direction   . Since cos  1, we must show
that a  b  ab. Because our vectors are in the opposite direction, there exists a negative
scalar c such that a  cb, so a  |c|b  cb. a  b  cb  b  cb  b  cb2.
ab  cbb  cb2, so ab  cb2. Thus, a  b  ab.
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Third, suppose a and b are nonparallel. Place them so they have a common tail. Place
a  b so that its tail is at the tip of b and its tip is at the tip of a. The three vectors now form
a triangle, with sides of lengths a, b, and |a  b|. By the Law of Cosines,
|a  b|2  a2  b2  2abcos.

|a  b|2  a  b  a  b  a  a  a  b  b  a  b  b  a2  2a  b  b2.

Thus, a2  2a  b  b2  a2  b2  2abcos.

Subtracting a2 and b2 from both sides gives us 2a  b  2abcos.

Dividing both sides by 2 gives us a  b  abcos.

End of Proof (QED).

Corollary 1 to the Dot Product Theorem: Let  be the angle between nonzero vectors a
and b.
 a and b are in the same direction   0 iff cos  1 iff a  b  ab.
 a and b are in the opposite direction    iff cos  1 iff a  b  ab.
 a and b are parallel iff cos  1 iff cos2  1 iff sin  0 iff a  b  ab.

Corollary 2 to the Dot Product Theorem: For any two nonzero vectors a and b, if  is the
angle between them, then cos  ab

ab
, and   cos1 ab

ab
.

Note that the inverse cosine always produces an angle in the interval 0,, which is exactly
what we want. Also note that for any two nonzero vectors a and b, ab

ab
 1,1, which is

precisely the domain of the inverse cosine function.

Since   cos1 ab
ab

, it follows immediately that:

   
2 if and only if a  b  0

   
2 if and only if a  b  0

   
2 if and only if a  b  0

(You should confirm this by examining the graph of the inverse cosine function. Bear in
mind that ab is positive, so the sign of ab

ab
is determined by the sign of a  b. 

Two nonzero vectors are perpendicular if and only if they are orthogonal. Thus, for nonzero
vectors, “perpendicular” and “orthogonal” are essentially synonymous. However, this
connection breaks down when we consider the zero vector. 0 is orthogonal to every vector,
but we cannot call it perpendicular to any vector.
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4. Parallel Lines and Vectors, and Angles Between Lines:

A line and a nonzero vector are said to be parallel if the vector has a representation where
both the initial point and the terminal point lie on the line. If this is the case, then any
representation of the vector that intersects the line must be a subset of the line (i.e., if any
point of the representation lies on the line, then every point of the representation lies on the
line).

If a nonzero vector a is parallel to a line, then its opposite, a, is also parallel to that line.

Example 10: In the x,y plane, the line y  2x  3 and the vector  1,2  are parallel,
because one of the vector’s representation has initial point 0,3 and terminal point 1,5,
both of which points lie on the line. Likewise, the vector  1,2  is parallel to this line,
because one of the vector’s representation has initial point 0,3 and terminal point 1,1,
both of which points lie on the line.

In the x,y plane, a line is vertical if and only if it is parallel to j   0,1 . In x,y, z space, a
line is vertical if and only if it is parallel to k   0,0,1 .

In the x,y plane, a line is horizontal if and only if it is parallel to i   1,0 . In x,y, z space, a
line is horizontal if and only if it is parallel to a nonzero linear combination of i   1,0,0 
and j   0,1,0 .

Example 11: In x,y, z space, any line parallel to i or j or i  j or i  j is horizontal.

In the x,y plane, two nonvertical lines are parallel if and only if they have the same slope.
Any two vertical lines are parallel and have undefined slope. (A reference to “same” slope
implies the existence of slope, so we would not say that vertical lines have the same slope.)
For any real number m, a line has slope m if and only if it is parallel to the vector  1,m .
Note that the length of this vector is 1  m2 .

Example 12: In the x,y plane, the line y   3
5 x  7 is parallel to the vector  1, 3

5 .

Let L1 and L2 be two distinct and nonparallel lines in the x,y plane. These lines intersect at
exactly one point. We can identify two angles between these lines, which are supplements
of each other (i.e., the two angles add up to  radians or 180 degrees); for example, the
angles could be 35 and 145. At least one of the lines must be nonvertical. Suppose L1 is
nonvertical. Let m1 be the slope of L1 (so L1 is parallel to  1,m1 .
 If L2 is vertical, then L2 is parallel to j   0,1 . One of the angles between L1 and

L2 is the angle between j and  1,m1 , which is cos1 m1

1  m12
.

 If L2 is nonvertical, then L2 has slope m2 and is parallel to  1,m2 . One of the
angles between L1 and L2 is the angle between  1,m1  and  1,m2 , which is
cos1 1  m1m2

1  m12 1  m22
.
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Example 13: In the x,y plane, let L1 be the line 6x  5y  2, which has slope m1  6
5 , and

let L2 be the line 8x  3y  9, which has slope m2   8
3 . These lines are parallel to the

vectors u1   1, 6
5  and u2   1, 8

3 , respectively, whose respective lengths are

1  36
25 and 1  64

9 . The angle between these vectors is

cos1
1  48

15

1  36
25

1  64
9

 cos1 33
4,453

, which is about 2.088 radians or 119.6. Thus, the angles

between our two lines are about 2.088 and 1.054 radians, or 119.6 and 60.4.

5. Vector Direction:

In Section 12.2, we introduced the idea of a nonzero vector’s direction, but we did not
develop this idea rigorously. We are now in a position to do so. Vector direction is
pinpointed by the specification of various angles.

In two-dimensional space, two angles are required to uniquely determine a vector’s
direction, since only one angle would be ambiguous (since vector angles are non-oriented,
two different directions can be associated with just one angle). Similarly, three angles are
required in three-dimensional space.

For any nonzero vector a in two-dimensional space, its direction is determined by the angle
 between a and i   1,0 , and by the angle  between a and j   0,1 . We refer to 
and  as the direction angles of a. If a   a1,a2 , then   cos1 ai

a1
 cos1 a1

a , and

  cos1 aj
a1

 cos1 a2
a . Equivalently, cos  a1

a and cos  a2
a . cos and cos are

referred to as the direction cosines of the vector a. Recall that the unit vector in the
direction of a is a

a   a1
a , a2

a . Thus, cos and cos are, respectively, the first and second
components of the unit vector in the direction of a. a 1  acos and a2  acos, so
a   acos,acos   a  cos, cos . Since a

a   cos, cos , it follows that
cos2  cos2  1. This is known as the Pythagorean Identity.

For any nonzero vector a in three-dimensional space, its direction is determined by the
angle  between a and i   1,0,0 , and by the angle  between a and j   0,1,0 , and
by the angle  between a and k   0,0,1 . We refer to , , and  as the direction
angles of a. If a   a1,a2,a3 , then   cos1 ai

a1
 cos1 a1

a , and   cos1 aj
a1

 cos1 a2
a ,

and   cos1 ak
a1

 cos1 a3
a . Equivalently, cos  a1

a and cos  a2
a and cos  a3

a . cos,

cos, and cos are referred to as the direction cosines of the vector a. Recall that the unit
vector in the direction of a is a

a   a1
a , a2

a , a3
a . Thus, cos, cos, and cos are,

respectively, the first, second, and third components of the unit vector in the direction of a.
a 1  acos and a2  acos and a3  acos, so a   acos,acos,acos 
 a  cos, cos,acos . Since a

a   cos, cos, cos , it follows that
cos2  cos2  cos2  1. This is known as the Pythagorean Identity.
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Example 14: Here is a table of two-dimensional vectors and their direction angles
(measured in degrees). Each vector is a unit vector.

Vector:  

 1,0   i 0 90

 3
2 , 1

2  30 60

 2
2 , 2

2  45 45

 1
2 ,

3
2  60 30

 0,1   j 90 0

  1
2 ,

3
2  120 30

  2
2 , 2

2  135 45

  3
2 , 1

2  150 60

 1,0   i 180 90

  3
2 , 1

2  150 120

  2
2 , 2

2  135 135

  1
2 ,

3
2  120 150

 0,1   j 90 180

 1
2 ,

3
2  60 150

 2
2 , 2

2  45 135

 3
2 , 1

2  30 120

Example 15: Let a   3,5,6 . a  70 . The direction angles of a are
  cos1 3

70
 1.204, and   cos1 5

70
 2.211, and   cos1 6

70
 0.771.

Two nonzero vectors have the same direction if and only if their corresponding direction
angles are equal, and they have opposite direction if and only if their corresponding
direction angles are supplementary. In other words:
 In the x,y plane, suppose a has direction angles 1 and 1, and suppose b has

direction angles 2 and 2.
a and b have the same direction if and only if 1  2 and 1  2.
a and b have opposite direction if and only if 1  2   and 1  2  .

 In x,y, z space, suppose a has direction angles 1, 1, and 1, and suppose b has
direction angles 2, 2, and 2.
a and b have the same direction if and only if 1  2 and 1  2 and 1  2.
a and b have opposite direction if and only if 1  2   and 1  2   and
1  2  .
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In Section 12.2, we stated, but did not prove, that any nonzero vector and its additive
inverse have opposite directions. We are now in a position to prove this. We shall do so for
a two-dimensional vector; the three-dimensional proof is analogous. Let a   a1,a2  be a
nonzero vector. Its additive inverse is a   a1,a2 . Let 1 and 1 be the direction
angles of a, and let 2 and 2 be the direction angles of a. 1  cos1 a1

a , and
1  cos1 a2

a . 2  cos1 a1
a , and 1  cos1 a2

a . For any x  1,1,
cos1x  cos1x  . Therefore 1  2   and 1  2  .

6. Vector Projections and Work:

Let a and b be two nonzero vectors in either two dimensions or in three dimensions. The
vector projection of b onto a is the vector ab

a2 a, or ab
aa a. This is denoted projab.

Let  be the angle between a and b.

If   
2 (i.e., if a and b are perpendicular), then a  b  0 and ab

a2 a  0a  0.

If   0 or    (i.e., if a and b are parallel), then there exists a nonzero scalar c such that
b  ca. In this case, a  b  a  ca  ca  a  ca2, so ab

a2  ca2

a2  c, and ab
a2 a  ca  b.

If  is acute or obtuse, then ab
a2 a can be understood in terms of triangle geometry. For this

purpose, let us consider representations of a and b having a common tail, P. Let A be the
tip of a, and let B be the tip of b, so we have the directed line segments PA for a and PB for
b. Let  be the line through B that is perpendicular to the line PA, and let Q be the point of
intersection between  and PA. If  is acute, then Q lies on the same side of P as A, but if 
is obtuse, then Q lies on the opposite side of P from A. Thus, PQ has the same direction as
PA if  is acute, and it has the opposite direction from PA if  is obtuse.

PQB is a right angle. PQB is a right triangle; it has hypotenuse PB and legs PQ and QB,
and we denote the lengths of these sides as PB, PQ, and QB, respectively. PB  b.

We shall now argue that PQ represents ab
a2 a. To establish this, we must demonstrate that

PQ has the appropriate length and direction; i.e., we must show that PQ  ab
a2 a and that

PQ and ab
a2 a have the same direction.

cosQPB  adj
hyp

 PQ
PB  PQ

b
, so PQ  bcosQPB. If  is acute, then QPB  , so

PQ  bcos. If  is obtuse, then QPB    , so PQ  bcos    bcos. In both
cases, we have PQ  |bcos|. Substituting ab

ab
in place of cos, we obtain

PQ  b ab
ab

 | aba |.

9



The unit vector in the direction of a is a
a .

ab
a2 a is equal to ab

a
a
a , so its magnitude is

| aba
a
a |  | aba || aa |  | aba |  PQ. Thus, PQ  ab

a2 a .

When  is acute, a  b  0, so ab
a2 a is a positive scalar multiple of a and therefore has the

same direction as a, which is the same direction as PA. When  is obtuse, a  b  0, so
ab
a2 a is a negative scalar multiple of a and therefore has the opposite direction from a, which

is the same direction as PA. Thus, in both cases, PQ and ab
a2 a have the same direction.

Ergo, PQ represents ab
a2 a.

Summary: Let  be the angle between the nonzero vectors a and b.
1. If   

2 , then projab  0.

2. If   0 or   , then projab  b.
3. If  is acute, then projab is the vector in the same direction as a whose length is

ab
a .

4. If  is obtuse, then projab is the vector in the opposite direction from a whose
length is the absolute value of ab

a .

Actually, the case where projab  b (case 2 in the above summary) does not need to be
listed separately; it can be merged with cases 3 and 4 above. Thus, our summary can be
condensed as follows:
1. If   

2 , then projab  0.

2. If   
2 , then projab is the vector in the same direction as a whose length is ab

a .
(In the special case where   0, we get b. 

3. If   
2 , then projab is the vector in the opposite direction from a whose length is

the absolute value of ab
a . (In the special case where   , we get b. 

In all cases, the magnitude of projab is | aba |, so we may think of ab
a as the signed

magnitude of projab. In other words, ab
a is the magnitude of projab when   

2 , and it is
the negative of the magnitude when   

2 .

ab
a is known as the component of b along a. It is also known as the
scalar projection of b onto a. It is denoted compab.

Note that projab is a vector, whereas compab is a scalar, and projab  compab a
a . In other

words, the vector projection of b onto a is equal to the component of b along a times the unit
vector in the direction of a. We also have projab  compab

a a  1
a compaba.

Since cos  ab
ab

, bcos  ab
a  compab.
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Example 16: Let a   4,3  and b   2,4 . a  5 and a  b  20, so compab  4 and
projab  4

5 a 
4
5  4,3    16

5 , 12
5 . In terms of the geometry discussed above, if we

draw a and b in standard position, then P  0,0, A  4,3, B  2,4, the line PA is
y  3

4 x, the line  is y   4
3 x 

20
3 , and the point Q is  16

5 , 12
5  or 3.2,2. 4.

Example 17: Let a   2,3,1  and b   1,1,2 . a  14 and a  b  3, so
compab  3

14
and projab  1

14

3

14
a  3

14 a 
3
14  2,3,1    3

7 , 9
14 ,

3
14 .

If a is a unit vector, then a  1, and our formulas simplify as follows:
 compab  a  b
 projab  compaba  a  ba
These special formulas will be very important later on.

Suppose that a particle in either two-dimensional space or three-dimensional space moves
in a straight line from point C to point D (these being two distinct points). The directed line
segment CD is referred to as the particle’s displacement vector, which may be denoted d.
Its magnitude, d, is the distance traversed by the particle. Suppose a constant force f is
exerted on the particle along this path, with f being the magnitude of the force. If f has the
same direction as d, then the work done is the product fd. This is a special case of a more
general formula. More generally, f may not have the same direction as d. The work done
depends upon the component of f along d, compdf 

df
d
 fcos (where  is the angle

between d and f. We also refer to this as the component of force in the direction of
motion. To be precise, the work done, denoted W, is equal to the product of the
component of force in the direction of motion and the distance traversed, i.e.,
W  compdfd  f  d  fdcos.

Note that the work done has the potential to be positive or negative or zero. Specifically, it
is positive if   

2 , it is zero if   
2 , and it is negative if   

2 .

If the magnitude of force is measured in newtons and distance is measured in meters, then
work is measured in newton-meters, also known as joules.

Example 18: A particle in two-dimensional space moves horizontally a distance of 100
meters as a constant force is exerted upon it. The magnitude of the force is 70 newtons,
and the angle between the force and the direction of motion is 35. The work done is thus
70100cos35, which is 5,734 joules, rounded to the nearest whole number. (In this
situation, we have d   100,0 . f has direction angles   35 and   55, so
f  70  cos35, cos55    70cos35, 70cos55    57.34,40. 15 , and f  d 
 70cos35, 70cos55    100,0    57.34,40. 15    100,0   5,734. 

Example 19: A particle in three-dimensional space moves linearly from the point 2,1,0 to
the point 4,6,2 as a constant force f  3i  4j  5k is exerted upon it. Here we have
d   2,5,2  and f   3,4,5 , so the work done is f  d   3,4,5    2,5,2 
 6  20  10  36.
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